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Outline

O global concept of microgrid and electric vehicle (EV) modeling

O Lawrence Berkeley National Laboratory’s Distributed Energy
Resources Customer Adoption Model (DER-CAM)

O example EV connection to an office building, optimal
Interaction with a microgrid

O example demand response, CO, tax, annual building energy
costs, CO, emissions

Do EVs support financial as well as environmental benefits of
on-site generation at microgrids?

O conclusions
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Global concept

single building at the building site

solar solar d d
PV —
——<__ reduced service
chicles demand
sales to grid o ) : e
electricity

only

.
=,

refrigeration [*. .~
+ building b

cooling

electricity

AB1aua paseyaind
ABiaua Jaylo

83z original
248 T :
c\|s5¢ service
natural gas, building & 3°5
propane, and heating

liquid fuels

~—<— | demand

hot
water

heat
storage

key
gas orliquid
Ny fuels gnly
losses -

.

£ BN

commercial on-site geothermal
biofuels biofuels heat

~

A
frreeee
BerkeLey Lao

Years of World-Class
Science
1931-2000

Environmental Energy Technologies Division




DER-CAM

The Distributed Energy Resources
Customer Adoption Model
(DER-CAM)
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DER-CAM

O is a deterministic Mixed Integer Linear Program (MILP),
written in the General Algebraic Modeling System (GAMS®)

O minimizes annual energy costs, CO, emissions, or multiple
objectives of providing services to a building microgrid

O produces technology neutral pure optimal results, delivers
iInvestment decision and operational schedule

O has been designed for more than 9 years by Berkeley Lab
and collaborations in the US, Germany, Spain, Belgium,
Japan, and Australia > exchange visitors

O first commercialization and real-time optimization steps, e.g.
Storage & PV Viability Optimization Web-Service (SVOW),
http.://der.Ibl.gov/microgrids-lbnl/current-project-storage-
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Example analysis

2020 Equipment Options, Tariffs,
and Building Analyzed
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Equipment

O EVs belong to employees/commuters
O EVs can transfer energy to the office building and vice versa

O the building energy management system (EMS) can manage
(charge/discharge) the EV batteries during office hours

O EV owner receives exact compensation for battery
degradation and receives a fixed amount of $80/year

EV-building connection period 9am — 6pm

EV-home connection period 8pm — 7am

EV battery state-of-charge (SOC) when arriving at the office building &¥

EV battery SOC when leaving the office building >3900/,

EV battery charging efficiency 95.4%
EV battery discharging efficiency 95.4%
EV battery capacity 16 kWh

Maximum EV battery charging rate 0.45 [1/h]
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Equipment

O also combined heat and power (CHP), PV, solar thermal,
stationary battery, etc. is considered

O technology costs in 2020 are based on “Assumptions to
the Annual U.S. Energy Outlook”, e.g.

> fuel cell (FC) with heat exchanger (HX): $2220 -
$2770/kW, lifetime: 10 years

> internal combustion engine (ICE) with HX: $2180 -
$3580/kW, lifetime: 20 years

> PV: $3237/kW, lifetime: 20 years
> stationary battery: $193/kWh
> efc.

Details can be found in full paper.
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Building / tariffs

O electricity and gas loads for a San Francisco Bay Area office
building are passed on the California Commercial End-Use
Survey (CEUS)

» peak electric demand: 373 kW
» annual electricity demand: 1.677 GWh
» annual natural gas consumption: 0.713 GWh

O TOU rates and demand charges:
> on-peak electricity up to 0.16 $/kWh
> off-peak rates around 0.10 $/kWh
» Demand charges up to 10.27 $/kW-month

O electric rate at residences (homes): $0.062/kWh (plus any
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Example analysis

Optimization Results

Optimal Investments in DER
Technologies and Operation,
Optimal EV Discharging / Charging
to Minimize Energy Costs at Office
Building
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Building energy costs vs. CO, tax
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EV capacity vs. CO, tax
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EV as only option: capacity always decreases with
CO, tax due to battery inefficiencies and flat hourly
marginal carbon emissions
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Building energy costs vs. CO, emissions

Annual Office Building Energy Costs and CO, Emissions subject to CO, Tax
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Diurnal electricity pattern, highest CO, tax

EV&PV&stationary battery case, July weekday
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Electric vehicle

Conclusions
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Building / tariffs

O in almost all cases no energy is transferred to the residence

O high CO, prices favor PV, but all its energy is used in the
office building

O EV and stationary batteries absorb some electricity from PV
and release it in the afternoon, when the PV output is down

O EVs are effectively used to reduce TOU and demand
charges at the office building

O due to the limited connection time of EV batteries, stationary
batteries and CHP are more attractive to the office building

O California macrogrid CO, emissions are very flat and more
volatile CO, emissions would change the results.
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End

Thank you!

Questions and comments are very
welcome.
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High-level schematic
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Representative MILP

Energy balance S | m pl |f|ed* Operational constraints
+energy purchase -generators, chillers, etc. must operate within
+energy generated onsite D E R'CAM performance limits
= onsite demand + energy sales d I -heat recovered is limited by generated waste heat
\ mode -solar radiation / footprint constraint
Objective function, e.g. min. annual energy /
bill for a test year:
+energy purchase costs Financial constraints
+amortized DER technology capital costs <4— | -max. allowed payback
+annual O&M costs period, e.g. 12 years
+ CO, costs
/ - energy sales \
£ 0

Regulatory constraints
-minimum efficiency requirement
-emission limits

Storage and DR constraints
-electricity stored is limited by battery size
-heat storage is limited by reservoir size

-GO, tax _ _ . - -max. efficiency potential for heating and
-CA min. eff. requirement for subsidy and (in future) feed-in tariff electricity
\-ZNEB J

*does not show all constraints
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